Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Linear Convergence of Frank-Wolfe for Rank-One Matrix Recovery Without Strong Convexity (1912.01467v2)

Published 3 Dec 2019 in math.OC and cs.LG

Abstract: We consider convex optimization problems which are widely used as convex relaxations for low-rank matrix recovery problems. In particular, in several important problems, such as phase retrieval and robust PCA, the underlying assumption in many cases is that the optimal solution is rank-one. In this paper we consider a simple and natural sufficient condition on the objective so that the optimal solution to these relaxations is indeed unique and rank-one. Mainly, we show that under this condition, the standard Frank-Wolfe method with line-search (i.e., without any tuning of parameters whatsoever), which only requires a single rank-one SVD computation per iteration, finds an $\epsilon$-approximated solution in only $O(\log{1/\epsilon})$ iterations (as opposed to the previous best known bound of $O(1/\epsilon)$), despite the fact that the objective is not strongly convex. We consider several variants of the basic method with improved complexities, as well as an extension motivated by robust PCA, and finally, an extension to nonsmooth problems.

Citations (13)

Summary

We haven't generated a summary for this paper yet.