Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convex Optimization without Projection Steps (1108.1170v6)

Published 4 Aug 2011 in math.OC, cs.AI, and cs.SY

Abstract: For the general problem of minimizing a convex function over a compact convex domain, we will investigate a simple iterative approximation algorithm based on the method by Frank & Wolfe 1956, that does not need projection steps in order to stay inside the optimization domain. Instead of a projection step, the linearized problem defined by a current subgradient is solved, which gives a step direction that will naturally stay in the domain. Our framework generalizes the sparse greedy algorithm of Frank & Wolfe and its primal-dual analysis by Clarkson 2010 (and the low-rank SDP approach by Hazan 2008) to arbitrary convex domains. We give a convergence proof guaranteeing {\epsilon}-small duality gap after O(1/{\epsilon}) iterations. The method allows us to understand the sparsity of approximate solutions for any l1-regularized convex optimization problem (and for optimization over the simplex), expressed as a function of the approximation quality. We obtain matching upper and lower bounds of {\Theta}(1/{\epsilon}) for the sparsity for l1-problems. The same bounds apply to low-rank semidefinite optimization with bounded trace, showing that rank O(1/{\epsilon}) is best possible here as well. As another application, we obtain sparse matrices of O(1/{\epsilon}) non-zero entries as {\epsilon}-approximate solutions when optimizing any convex function over a class of diagonally dominant symmetric matrices. We show that our proposed first-order method also applies to nuclear norm and max-norm matrix optimization problems. For nuclear norm regularized optimization, such as matrix completion and low-rank recovery, we demonstrate the practical efficiency and scalability of our algorithm for large matrix problems, as e.g. the Netflix dataset. For general convex optimization over bounded matrix max-norm, our algorithm is the first with a convergence guarantee, to the best of our knowledge.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Martin Jaggi (155 papers)
Citations (38)

Summary

We haven't generated a summary for this paper yet.