Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On List-decodability of Random Rank Metric Codes (1401.2693v2)

Published 13 Jan 2014 in cs.IT and math.IT

Abstract: In the present paper, we consider list decoding for both random rank metric codes and random linear rank metric codes. Firstly, we show that, for arbitrary $0<R\<1$ and $\epsilon\>0$ ($\epsilon$ and $R$ are independent), if $0<\frac{n}{m}\leq \epsilon$, then with high probability a random rank metric code in $F_{q}{m\times n}$ of rate $R$ can be list-decoded up to a fraction $(1-R-\epsilon)$ of rank errors with constant list size $L$ satisfying $L\leq O(1/\epsilon)$. Moreover, if $\frac{n}{m}\geq\Theta_R(\epsilon)$, any rank metric code in $F_{q}{m\times n}$ with rate $R$ and decoding radius $\rho=1-R-\epsilon$ can not be list decoded in ${\rm poly}(n)$ time. Secondly, we show that if $\frac{n}{m}$ tends to a constant $b\leq 1$, then every $F_q$-linear rank metric code in $F_{q}{m\times n}$ with rate $R$ and list decoding radius $\rho$ satisfies the Gilbert-Varsharmov bound, i.e., $R\leq (1-\rho)(1-b\rho)$. Furthermore, for arbitrary $\epsilon>0$ and any $0<\rho<1$, with high probability a random $F_q$-linear rank metric codes with rate $R=(1-\rho)(1-b\rho)-\epsilon$ can be list decoded up to a fraction $\rho$ of rank errors with constant list size $L$ satisfying $L\leq O(\exp(1/\epsilon))$.

Citations (29)

Summary

We haven't generated a summary for this paper yet.