Papers
Topics
Authors
Recent
2000 character limit reached

Computing the non-properness set of real polynomial maps in the plane (2101.05245v3)

Published 13 Jan 2021 in math.AG

Abstract: We introduce novel mathematical and computational tools to develop a complete algorithm for computing the set of non-properness of polynomials maps in the plane. In particular, this set, which we call \emph{the Jelonek set}, is a subset of $\mathbb{K}2$ where a dominant polynomial map $f:\mathbb{K}2\to\mathbb{K}2$ is not proper; $\mathbb{K}$ could be either $\mathbb{C}$ or $\mathbb{R}$. Unlike all the previously known approaches we make no assumptions on $f$ whenever $\mathbb{K} = \mathbb{R}$; this is the first algorithm with this property. The algorithm takes into account the Newton polytopes of the polynomials. As a byproduct we provide a finer representation of the set of non-properness as a union of semi-algebraic curves, that correspond to edges of the Newton polytopes, which is of independent interest. Finally, we present a precise Boolean complexity analysis of the algorithm and a prototype implementation in Maple.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.