Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rethinking Interactive Image Segmentation: Feature Space Annotation (2101.04378v3)

Published 12 Jan 2021 in cs.CV

Abstract: Despite the progress of interactive image segmentation methods, high-quality pixel-level annotation is still time-consuming and laborious - a bottleneck for several deep learning applications. We take a step back to propose interactive and simultaneous segment annotation from multiple images guided by feature space projection. This strategy is in stark contrast to existing interactive segmentation methodologies, which perform annotation in the image domain. We show that feature space annotation achieves competitive results with state-of-the-art methods in foreground segmentation datasets: iCoSeg, DAVIS, and Rooftop. Moreover, in the semantic segmentation context, it achieves 91.5% accuracy in the Cityscapes dataset, being 74.75 times faster than the original annotation procedure. Further, our contribution sheds light on a novel direction for interactive image annotation that can be integrated with existing methodologies. The supplementary material presents video demonstrations. Code available at https://github.com/LIDS-UNICAMP/rethinking-interactive-image-segmentation.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
Citations (6)

Summary

We haven't generated a summary for this paper yet.