Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

General Hannan and Quinn Criterion for Common Time Series (2101.04210v1)

Published 11 Jan 2021 in math.ST, cs.LG, stat.ML, and stat.TH

Abstract: This paper aims to study data driven model selection criteria for a large class of time series, which includes ARMA or AR($\infty$) processes, as well as GARCH or ARCH($\infty$), APARCH and many others processes. We tackled the challenging issue of designing adaptive criteria which enjoys the strong consistency property. When the observations are generated from one of the aforementioned models, the new criteria, select the true model almost surely asymptotically. The proposed criteria are based on the minimization of a penalized contrast akin to the Hannan and Quinn's criterion and then involved a term which is known for most classical time series models and for more complex models, this term can be data driven calibrated. Monte-Carlo experiments and an illustrative example on the CAC 40 index are performed to highlight the obtained results.

Citations (2)

Summary

We haven't generated a summary for this paper yet.