Condensation phenomena in preferential attachment trees with neighbourhood influence (2101.02734v1)
Abstract: We introduce a model of evolving preferential attachment trees where vertices are assigned weights, and the evolution of a vertex depends not only on its own weight, but also on the weights of its neighbours. We study the distribution of edges with endpoints having certain weights, and the distribution of degrees of vertices having a given weight. We show that the former exhibits a condensation phenomenon under a certain critical condition, whereas the latter converges almost surely to a distribution that resembles a power law distribution. Moreover, in the absence of condensation, we prove almost-sure setwise convergence of the related quantities. This generalises existing results on the Bianconi-Barab\'{a}si tree as well as on an evolving tree model introduced by the second author.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.