Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 174 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Co-evolving dynamic networks (2203.11877v2)

Published 22 Mar 2022 in math.PR

Abstract: We propose a general class of co-evolving tree network models driven by local exploration where new vertices attach to the current network via randomly sampling a vertex and then exploring the graph for a random number of steps in the direction of the root, connecting to the terminal vertex. Specific choices of the exploration step distribution lead to the well-studied affine preferential attachment and uniform attachment models, as well as less well understood dynamic network models with global attachment functionals such as PageRank scores [Chebolu-Melsted (2008)]. We obtain local weak limits for such networks and use them to derive asymptotics for the limiting empirical degree and PageRank distribution. We also quantify asymptotics for the degree and PageRank of fixed vertices, including the root, and the height of the network. Two distinct regimes are seen to emerge, based on the expected exploration distance of incoming vertices, which we call the fringe' andnon-fringe' regimes. These regimes are shown to exhibit different qualitative and quantitative properties. In particular, networks in the non-fringe regime undergo `condensation' where the root degree grows at the same rate as the network size. Networks in the fringe regime do not exhibit condensation. Non-trivial phase transition phenomena are displayed for the height and the PageRank distribution, the latter connecting to the well known power-law hypothesis. In the process, we develop a general set of techniques involving local limits, infinite-dimensional urn models, related multitype branching processes and corresponding Perron-Frobenius theory, branching random walks, and in particular relating tail exponents of various functionals to the scaling exponents of quasi-stationary distributions of associated random walks. These techniques are expected to shed light on a variety of other co-evolving network models.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.