Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Reinforcement Learning for Black-Box Testing of Android Apps (2101.02636v2)

Published 7 Jan 2021 in cs.SE

Abstract: The state space of Android apps is huge and its thorough exploration during testing remains a major challenge. In fact, the best exploration strategy is highly dependent on the features of the app under test. Reinforcement Learning (RL) is a machine learning technique that learns the optimal strategy to solve a task by trial and error, guided by positive or negative reward, rather than by explicit supervision. Deep RL is a recent extension of RL that takes advantage of the learning capabilities of neural networks. Such capabilities make Deep RL suitable for complex exploration spaces such as the one of Android apps. However, state of the art, publicly available tools only support basic, tabular RL. We have developed ARES, a Deep RL approach for black-box testing of Android apps. Experimental results show that it achieves higher coverage and fault revelation than the baselines, which include state of the art RL based tools, such as TimeMachine and Q-Testing. We also investigated qualitatively the reasons behind such performance and we have identified the key features of Android apps that make Deep RL particularly effective on them to be the presence of chained and blocking activities.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Andrea Romdhana (2 papers)
  2. Alessio Merlo (13 papers)
  3. Mariano Ceccato (15 papers)
  4. Paolo Tonella (42 papers)
Citations (56)