Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Meta-Learning Conjugate Priors for Few-Shot Bayesian Optimization (2101.00729v1)

Published 3 Jan 2021 in cs.LG and cs.AI

Abstract: Bayesian Optimization is methodology used in statistical modelling that utilizes a Gaussian process prior distribution to iteratively update a posterior distribution towards the true distribution of the data. Finding unbiased informative priors to sample from is challenging and can greatly influence the outcome on the posterior distribution if only few data are available. In this paper we propose a novel approach to utilize meta-learning to automate the estimation of informative conjugate prior distributions given a distribution class. From this process we generate priors that require only few data to estimate the shape parameters of the original distribution of the data.

Summary

We haven't generated a summary for this paper yet.