Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Privacy-preserving Travel Time Prediction with Uncertainty Using GPS Trace Data (2101.00310v2)

Published 1 Jan 2021 in cs.CR

Abstract: The rapid growth of GPS technology and mobile devices has led to a massive accumulation of location data, bringing considerable benefits to individuals and society. One of the major usages of such data is travel time prediction, a typical service provided by GPS navigation devices and apps. Meanwhile, the constant collection and analysis of the individual location data also pose unprecedented privacy threats. We leverage the notion of geo-indistinguishability, an extension of differential privacy to the location privacy setting, and propose a procedure for privacy-preserving travel time prediction without collecting actual individual GPS trace data. We propose new concepts to examine the impact of geo-indistinguishability-based sanitization on the usefulness of GPS traces and provide analytical and experimental utility analysis for privacy-preserving travel time prediction. We also propose new metrics to measure the adversary error in learning individual GPS traces from the collected sanitized data. Our experiment results suggest that the proposed procedure provides travel time prediction with satisfactory accuracy at reasonably small privacy costs.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Fang Liu (801 papers)
  2. Dong Wang (628 papers)
  3. Zhengquan Xu (4 papers)
Citations (17)

Summary

We haven't generated a summary for this paper yet.