Between Shor and Steane: A unifying construction for measuring error syndromes (2012.15403v2)
Abstract: Fault-tolerant quantum error correction requires the measurement of error syndromes in a way that minimizes correlated errors on the quantum data. Steane and Shor ancilla are two well-known methods for fault-tolerant syndrome extraction. In this paper, we find a unifying construction that generates a family of ancilla blocks that interpolate between Shor and Steane. This family increases the complexity of ancilla construction in exchange for reducing the rounds of measurement required to fault-tolerantly measure the error. We then apply this construction to the toric code of size $L\times L$ and find that blocks of size $m\times m$ can be used to decode errors in $O(L/m)$ rounds of measurements. Our method can be applied to any Calderbank-Shor-Steane codes and presents a new direction for optimizing fault-tolerant quantum computation.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.