Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 105 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Kimi K2 193 tok/s Pro
2000 character limit reached

Comparing Shor and Steane Error Correction Using the Bacon-Shor Code (2312.10851v1)

Published 17 Dec 2023 in quant-ph

Abstract: Quantum states can quickly decohere through interaction with the environment. Quantum error correction is a method for preserving coherence through active feedback. Quantum error correction encodes the quantum information into a logical state with a high-degree of symmetry. Perturbations are first detected by measuring the symmetries of the quantum state and then corrected by applying a set of gates based on the measurements. In order to measure the symmetries without perturbing the data, ancillary quantum states are required. Shor error correction uses a separate quantum state for the measurement of each symmetry. Steane error correction maps the perturbations onto a logical ancilla qubit, which is then measured to check several symmetries simultaneously. Here we experimentally compare Shor and Steane correction of bit flip errors using the Bacon-Shor code implemented in a chain of 23 trapped atomic ions. We find that the Steane error correction provides better logical error rates after a single-round of error correction and less disturbance to the data qubits without error correction.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (44)
  1. How to factor 2048 bit rsa integers in 8 hours using 20 million noisy qubits. \JournalTitleQuantum 5, 433, DOI: 10.22331/q-2021-04-15-433 (2021).
  2. Beverland, M. E. et al. Assessing requirements to scale to practical quantum advantage. \JournalTitlearXiv:2211.07629 (2022). 2211.07629.
  3. Egan, L. et al. Fault-tolerant control of an error-corrected qubit. \JournalTitleNature 598, 281–286, DOI: 10.1038/s41586-021-03928-y (2021).
  4. Nguyen, N. H. et al. Demonstration of shor encoding on a trapped-ion quantum computer. \JournalTitlePhys. Rev. Appl. 16, 024057, DOI: 10.1103/PhysRevApplied.16.024057 (2021).
  5. Sivak, V. V. et al. Real-time quantum error correction beyond break-even. \JournalTitleNature 616, 50–55, DOI: 10.1038/s41586-023-05782-6 (2023).
  6. Ryan-Anderson, C. et al. Realization of real-time fault-tolerant quantum error correction. \JournalTitlePhys. Rev. X 11, 041058, DOI: 10.1103/PhysRevX.11.041058 (2021).
  7. Ryan-Anderson, C. et al. Implementing fault-tolerant entangling gates on the five-qubit code and the color code (2022).
  8. Postler, L. et al. Demonstration of fault-tolerant universal quantum gate operations. \JournalTitleNature 605, 675–680, DOI: 10.1038/s41586-022-04721-1 (2022).
  9. Krinner, S. et al. Realizing repeated quantum error correction in a distance-three surface code. \JournalTitleNature 605, 669–674, DOI: 10.1038/s41586-022-04566-8 (2022).
  10. Sundaresan, N. et al. Demonstrating multi-round subsystem quantum error correction using matching and maximum likelihood decoders. \JournalTitleNature Communications 14, 2852, DOI: 10.1038/s41467-023-38247-5 (2023).
  11. Acharya, R. et al. Suppressing quantum errors by scaling a surface code logical qubit. \JournalTitleNature 614, 676–681, DOI: 10.1038/s41586-022-05434-1 (2023).
  12. Zhao, Y. et al. Realization of an error-correcting surface code with superconducting qubits. \JournalTitlePhys. Rev. Lett. 129, 030501, DOI: 10.1103/PhysRevLett.129.030501 (2022).
  13. Bluvstein, D. et al. Logical quantum processor based on reconfigurable atom arrays. \JournalTitleNature DOI: 10.1038/s41586-023-06927-3 (2023).
  14. Gottesman, D. Stabilizer codes and quantum error correction. \JournalTitlearXiv:quant-ph/9705052 DOI: 10.48550/arXiv.quant-ph/9705052 (1997).
  15. Shor, P. W. Fault-tolerant quantum computation. FOCS ’96, 56–65, DOI: 10.1109/SFCS.1996.548464 (IEEE Computer Society Press, 1996).
  16. High threshold universal quantum computation on the surface code. \JournalTitlePhys. Rev. A 80, 052312, DOI: 10.1103/PhysRevA.80.052312 (2009).
  17. Low-distance surface codes under realistic quantum noise. \JournalTitlePhys. Rev. A 90, 062320, DOI: 10.1103/PhysRevA.90.062320 (2014).
  18. Direct measurement of Bacon-Shor code stabilizers. \JournalTitlePhys. Rev. A 98, 050301, DOI: 10.1103/PhysRevA.98.050301 (2018).
  19. Flag fault-tolerant error correction for any stabilizer code. \JournalTitlePRX Quantum 1, 010302, DOI: 10.1103/PRXQuantum.1.010302 (2020).
  20. Steane, A. M. Active stabilization, quantum computation, and quantum state synthesis. \JournalTitlePhys. Rev. Lett. 78, 2252–2255, DOI: 10.1103/PhysRevLett.78.2252 (1997).
  21. Knill, E. Quantum computing with realistically noisy devices. \JournalTitleNature 434, 39–44, DOI: 10.1038/nature03350 (2005).
  22. Between shor and steane: A unifying construction for measuring error syndromes. \JournalTitlePhys. Rev. Lett. 127, 090505, DOI: 10.1103/PhysRevLett.127.090505 (2021).
  23. Fault-tolerant preparation of stabilizer states for quantum calderbank-shor-steane codes by classical error-correcting codes. \JournalTitlePhys. Rev. A 95, 032339, DOI: 10.1103/PhysRevA.95.032339 (2017).
  24. Bacon, D. Operator quantum error-correcting subsystems for self-correcting quantum memories. \JournalTitlePhys. Rev. A 73, 012340, DOI: 10.1103/PhysRevA.73.012340 (2006).
  25. Subsystem fault tolerance with the bacon-shor code. \JournalTitlePhys. Rev. Lett. 98, 220502, DOI: 10.1103/PhysRevLett.98.220502 (2007).
  26. Poulin, D. Stabilizer formalism for operator quantum error correction. \JournalTitlePhys. Rev. Lett. 95, 230504, DOI: 10.1103/PhysRevLett.95.230504 (2005).
  27. Fault tolerance with bare ancillary qubits for a [[7,1,3]] code. \JournalTitlePhys. Rev. A 96, 032341, DOI: 10.1103/PhysRevA.96.032341 (2017).
  28. 2d compass codes. \JournalTitlePhys. Rev. X 9, 021041, DOI: 10.1103/PhysRevX.9.021041 (2019).
  29. Cetina, M. et al. Control of transverse motion for quantum gates on individually addressed atomic qubits. \JournalTitlePRX Quantum 3, 010334, DOI: 10.1103/PRXQuantum.3.010334 (2022).
  30. Beyond single-shot fault-tolerant quantum error correction. \JournalTitleIEEE Transactions on Information Theory 68, 287–301, DOI: 10.1109/TIT.2021.3120685 (2022).
  31. Adaptive syndrome measurements for Shor-style error correction. \JournalTitleQuantum 7, 1075, DOI: 10.22331/q-2023-08-08-1075 (2023).
  32. Quantum error correction with only two extra qubits. \JournalTitlePhys. Rev. Lett. 121, 050502, DOI: 10.1103/PhysRevLett.121.050502 (2018).
  33. Flag fault-tolerant error correction with arbitrary distance codes. \JournalTitleQuantum 2, 10–22331 (2018).
  34. Short Shor-style syndrome sequences. \JournalTitlearXiv:2008.05051 DOI: 10.48550/arXiv.2008.05051 (2020).
  35. Labaziewicz, J. et al. Suppression of Heating Rates in Cryogenic Surface-Electrode Ion Traps. \JournalTitlePhysical Review Letters 100, 013001, DOI: 10.1103/PhysRevLett.100.013001 (2008).
  36. Hite, D. A. et al. 100-Fold Reduction of Electric-Field Noise in an Ion Trap Cleaned with In Situ Argon-Ion-Beam Bombardment. \JournalTitlePhysical Review Letters 109, 103001, DOI: 10.1103/PhysRevLett.109.103001 (2012).
  37. Sedlacek, J. A. et al. Evidence for multiple mechanisms underlying surface electric-field noise in ion traps. \JournalTitlePhysical Review A 98, 63430, DOI: 10.1103/PhysRevA.98.063430 (2018).
  38. One- and two-qubit gate infidelities due to motional errors in trapped ions and electrons. \JournalTitlePhys. Rev. A 105, 022437, DOI: 10.1103/PhysRevA.105.022437 (2022).
  39. Fault-tolerant quantum computation for local leakage faults. \JournalTitleQuantum Info. Comput. 7, 139–156, DOI: 10.26421/QIC7.1-2-9 (2007).
  40. Architecture for a large-scale ion-trap quantum computer. \JournalTitleNature 417, 709–711, DOI: 10.1038/nature00784 (2002).
  41. Taylor, J. et al. Fault-tolerant architecture for quantum computation using electrically controlled semiconductor spins. \JournalTitleNature Physics 1, 177–183, DOI: 10.1038/nphys174 (2005).
  42. Kang, M. et al. Designing filter functions of frequency-modulated pulses for high-fidelity two-qubit gates in ion chains. \JournalTitlePhys. Rev. Appl. 19, 014014, DOI: 10.1103/PhysRevApplied.19.014014 (2023).
  43. Arbitrarily accurate composite pulse sequences. \JournalTitlePhysical Review A 70, 052318, DOI: 10.1103/PhysRevA.70.052318 (2004).
  44. Wang, Y. et al. High-fidelity two-qubit gates using a microelectromechanical-system-based beam steering system for individual qubit addressing. \JournalTitlePhys. Rev. Lett. 125, 150505, DOI: 10.1103/PhysRevLett.125.150505 (2020).
Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com