Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 105 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Kimi K2 193 tok/s Pro
2000 character limit reached

Improved performance of the Bacon-Shor code with Steane's syndrome extraction method (2403.01659v2)

Published 4 Mar 2024 in quant-ph

Abstract: We compare Steane's and Shor's syndrome extraction methods on the Bacon-Shor code. We propose a straightforward strategy based on post-selection to prepare the logical $|0\rangle_L$ and $|+\rangle_L$ states of the Bacon-Shor code by using flag-like qubits to verify their constituent Greenberger-Horne-Zeilinger states. We perform stabilizer simulations with a depolarizing Pauli error model and find that Steane's method significantly outperforms Shor's. Not only does Steane's method result in pseudo-thresholds that are about 1 order of magnitude higher than Shor's, but also its advantage increases monotonically as we go from a distance-3 to a distance-9 Bacon-Shor code. The advantage of Steane's method is the greatest in the regime where gate errors dominate over measurement errors. Some of the circuit constructions we propose for Steane's method are not formally fault-tolerant, yet outperform the formally fault-tolerant Shor's protocols for experimentally relevant physical error rates. This suggest that constructing formally fault-tolerant circuits that maintain the full code distance is not strictly necessary to guarantee the usefulness of a quantum error-correcting protocol. Despite relying on post-selection, we find that our methods can be efficient. These protocols would be naturally implementable on a platform with long-range qubit interactions like trapped ions or neutral atoms.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (74)
  1. Peter W. Shor. “Scheme for reducing decoherence in quantum computer memory”. Phys. Rev. A 52, R2493–R2496 (1995).
  2. “Theory of quantum error-correcting codes”. Phys. Rev. A 55, 900–911 (1997).
  3. P.W. Shor. “Fault-tolerant quantum computation”. In Proceedings of 37th Conference on Foundations of Computer Science. Pages 56–65.  (1996).
  4. “Quantum error correction and orthogonal geometry”. Phys. Rev. Lett. 78, 405–408 (1997).
  5. A.Yu. Kitaev. “Fault-tolerant quantum computation by anyons”. Annals of Physics 303, 2–30 (2003).
  6. Barbara M. Terhal. “Quantum error correction for quantum memories”. Rev. Mod. Phys. 87, 307–346 (2015).
  7. Peter W. Shor. “Algorithms for quantum computation: discrete logarithms and factoring”. In Proceedings 35th Annual Symposium on Foundations of Computer Science. Pages 124–134.  (1994).
  8. Seth Lloyd. “Universal quantum simulators”. Science 273, 1073–1078 (1996).
  9. “Simulated quantum computation of molecular energies”. Science 309, 1704–1707 (2005).
  10. “Fault-tolerant quantum computation with constant error rate”. SIAM Journal on Computing 38, 1207–1282 (2008).
  11. “Threshold accuracy for quantum computation” (1996). url: https://arxiv.org/abs/quant-ph/9610011.
  12. John Preskill. “Reliable quantum computers”. Proc. R. Soc. Lond. A. 454, 385–410 (1998).
  13. “Fault-tolerant quantum computation for local non-markovian noise”. Phys. Rev. A 71, 012336 (2005).
  14. “Fault-tolerant quantum computation with cluster states”. Phys. Rev. A 71, 042323 (2005).
  15. “Simple proof of fault tolerance in the graph-state model”. Phys. Rev. A 73, 032308 (2006).
  16. “Quantum accuracy threshold for concatenated distance-3 code”. Quantum Info. Comput. 6, 97–165 (2006).
  17. “Quantum error correction via codes over gf(4)”. IEEE Transactions on Information Theory 44, 1369–1387 (1998).
  18. Daniel E. Gottesman. “Stabilizer codes and quantum error correction”. Phd thesis. California Institute of Technology.  (1997).
  19. “Fault-tolerant error correction with efficient quantum codes”. Phys. Rev. Lett. 77, 3260–3263 (1996).
  20. “Effective fault-tolerant quantum computation with slow measurements”. Phys. Rev. Lett. 98, 020501 (2007).
  21. “The surface code with a twist”. Quantum 1, 2 (2017).
  22. “Quantum error correction with only two extra qubits”. Phys. Rev. Lett. 121, 050502 (2018).
  23. “Flag fault-tolerant error correction for any stabilizer code”. PRX Quantum 1, 010302 (2020).
  24. Yu Tomita and Krysta M. Svore. “Low-distance surface codes under realistic quantum noise”. Phys. Rev. A 90, 062320 (2014).
  25. “Fault tolerance with bare ancillary qubits for a [[7,1,3]] code”. Phys. Rev. A 96, 032341 (2017).
  26. “Direct measurement of bacon-shor code stabilizers”. Phys. Rev. A 98, 050301 (2018).
  27. Christof Zalka. “Threshold estimate for fault tolerant quantum computation” (1996). url: https://arxiv.org/abs/quant-ph/9612028.
  28. “Short shor-style syndrome sequences” (2020). url: https://arxiv.org/abs/2008.05051.
  29. “Adaptive syndrome measurements for Shor-style error correction”. Quantum 7, 1075 (2023).
  30. Héctor Bombín. “Single-shot fault-tolerant quantum error correction”. Phys. Rev. X 5, 031043 (2015).
  31. Earl T Campbell. “A theory of single-shot error correction for adversarial noise”. Quantum Science and Technology 4, 025006 (2019).
  32. A. M. Steane. “Active stabilization, quantum computation, and quantum state synthesis”. Phys. Rev. Lett. 78, 2252–2255 (1997).
  33. “Constructions for measuring error syndromes in calderbank-shor-steane codes between shor and steane methods”. Phys. Rev. A 104, 022429 (2021).
  34. “Between shor and steane: A unifying construction for measuring error syndromes”. Phys. Rev. Lett. 127, 090505 (2021).
  35. “Comparing shor and steane error correction using the bacon-shor code” (2023). url: https://arxiv.org/abs/2312.10851.
  36. “Demonstration of fault-tolerant steane quantum error correction” (2023). url: https://arxiv.org/abs/2312.09745.
  37. E. Knill. “Quantum computing with realistically noisy devices”. Nature 434, 39–44 (2005).
  38. Dave Bacon. “Operator quantum error-correcting subsystems for self-correcting quantum memories”. Phys. Rev. A 73, 012340 (2006).
  39. “Subsystem fault tolerance with the bacon-shor code”. Phys. Rev. Lett. 98, 220502 (2007).
  40. “Fault-tolerant preparation of stabilizer states for quantum calderbank-shor-steane codes by classical error-correcting codes”. Phys. Rev. A 95, 032339 (2017).
  41. “Efficient preparation of large-block-code ancilla states for fault-tolerant quantum computation”. Phys. Rev. A 97, 032331 (2018).
  42. “Unified and generalized approach to quantum error correction”. Phys. Rev. Lett. 94, 180501 (2005).
  43. David Poulin. “Stabilizer formalism for operator quantum error correction”. Phys. Rev. Lett. 95, 230504 (2005).
  44. “2d compass codes”. Phys. Rev. X 9, 021041 (2019).
  45. “Optimal bacon-shor codes”. Quantum Inf. Comput.13 (2013). url: https://arxiv.org/abs/1209.0794.
  46. “Logical performance of 9 qubit compass codes in ion traps with crosstalk errors”. Quantum Science and Technology 5, 034002 (2020).
  47. “Less bacon more threshold” (2023).
  48. “Fault-tolerant control of an error-corrected qubit”. Nature 598, 281–286 (2021).
  49. “Logical quantum processor based on reconfigurable atom arrays”. Nature 626, 58–65 (2024).
  50. “Universal quantum computation with ideal clifford gates and noisy ancillas”. Phys. Rev. A 71, 022316 (2005).
  51. Theodore J. Yoder. “Universal fault-tolerant quantum computation with bacon-shor codes” (2017). url: https://arxiv.org/abs/1705.01686.
  52. “Universal fault-tolerant gates on concatenated stabilizer codes”. Phys. Rev. X 6, 031039 (2016).
  53. “Handling leakage with subsystem codes”. New Journal of Physics 21, 073055 (2019).
  54. “Error-correcting bacon-shor code with continuous measurement of noncommuting operators”. Phys. Rev. A 102, 022415 (2020).
  55. “Fault-tolerant quantum error detection”. Science Advances 3, e1701074 (2017).
  56. “Demonstration of shor encoding on a trapped-ion quantum computer”. Phys. Rev. Appl. 16, 024057 (2021).
  57. “Analytical error analysis of clifford gates by the fault-path tracer method”. Quantum Inf. Process. 15, 3065–3079 (2016).
  58. “Simulating the performance of a distance-3 surface code in a linear ion trap”. New Journal of Physics 20, 043038 (2018).
  59. “Transversality and lattice surgery: Exploring realistic routes toward coupled logical qubits with trapped-ion quantum processors”. Phys. Rev. A 99, 022330 (2019).
  60. “Improved simulation of stabilizer circuits”. Phys. Rev. A 70, 052328 (2004).
  61. “Modeling quantum noise for efficient testing of fault-tolerant circuits”. Phys. Rev. A 87, 012324 (2013).
  62. “Approximation of realistic errors by clifford channels and pauli measurements”. Phys. Rev. A 87, 030302 (2013).
  63. “Tractable simulation of error correction with honest approximations to realistic fault models”. Phys. Rev. A 89, 022306 (2014).
  64. “Comparison of a quantum error-correction threshold for exact and approximate errors”. Phys. Rev. A 91, 022335 (2015).
  65. “Errors and pseudothresholds for incoherent and coherent noise”. Phys. Rev. A 94, 042338 (2016).
  66. “Simulation of rare events in quantum error correction”. Phys. Rev. A 88, 062308 (2013).
  67. “Robust syndrome extraction via bch encoding” (2023). url: https://arxiv.org/abs/2311.16044.
  68. “Dynamical subset sampling of quantum error-correcting protocols”. Phys. Rev. Res. 6, 013177 (2024).
  69. “Topological quantum memory”. Journal of Mathematical Physics 43, 4452–4505 (2002).
  70. H. Bombin and M. A. Martin-Delgado. “Optimal resources for topological two-dimensional stabilizer codes: Comparative study”. Phys. Rev. A 76, 012305 (2007).
  71. “Surface codes: Towards practical large-scale quantum computation”. Phys. Rev. A 86, 032324 (2012).
  72. “Assessing requirements to scale to practical quantum advantage” (2022). arXiv:2211.07629.
  73. “Quantum convolutional data-syndrome codes”. In 2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). Pages 1–5.  (2019).
  74. “Flag fault-tolerant error correction with arbitrary distance codes”. Quantum 2, 53 (2018).
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube