Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Future-Guided Incremental Transformer for Simultaneous Translation (2012.12465v1)

Published 23 Dec 2020 in cs.CL and cs.AI

Abstract: Simultaneous translation (ST) starts translations synchronously while reading source sentences, and is used in many online scenarios. The previous wait-k policy is concise and achieved good results in ST. However, wait-k policy faces two weaknesses: low training speed caused by the recalculation of hidden states and lack of future source information to guide training. For the low training speed, we propose an incremental Transformer with an average embedding layer (AEL) to accelerate the speed of calculation of the hidden states during training. For future-guided training, we propose a conventional Transformer as the teacher of the incremental Transformer, and try to invisibly embed some future information in the model through knowledge distillation. We conducted experiments on Chinese-English and German-English simultaneous translation tasks and compared with the wait-k policy to evaluate the proposed method. Our method can effectively increase the training speed by about 28 times on average at different k and implicitly embed some predictive abilities in the model, achieving better translation quality than wait-k baseline.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Shaolei Zhang (36 papers)
  2. Yang Feng (230 papers)
  3. Liangyou Li (36 papers)
Citations (37)

Summary

We haven't generated a summary for this paper yet.