Papers
Topics
Authors
Recent
2000 character limit reached

Training Convolutional Neural Networks With Hebbian Principal Component Analysis

Published 22 Dec 2020 in cs.CV | (2012.12229v1)

Abstract: Recent work has shown that biologically plausible Hebbian learning can be integrated with backpropagation learning (backprop), when training deep convolutional neural networks. In particular, it has been shown that Hebbian learning can be used for training the lower or the higher layers of a neural network. For instance, Hebbian learning is effective for re-training the higher layers of a pre-trained deep neural network, achieving comparable accuracy w.r.t. SGD, while requiring fewer training epochs, suggesting potential applications for transfer learning. In this paper we build on these results and we further improve Hebbian learning in these settings, by using a nonlinear Hebbian Principal Component Analysis (HPCA) learning rule, in place of the Hebbian Winner Takes All (HWTA) strategy used in previous work. We test this approach in the context of computer vision. In particular, the HPCA rule is used to train Convolutional Neural Networks in order to extract relevant features from the CIFAR-10 image dataset. The HPCA variant that we explore further improves the previous results, motivating further interest towards biologically plausible learning algorithms.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.