Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PyTorch-Hebbian: facilitating local learning in a deep learning framework (2102.00428v1)

Published 31 Jan 2021 in cs.LG and cs.CV

Abstract: Recently, unsupervised local learning, based on Hebb's idea that change in synaptic efficacy depends on the activity of the pre- and postsynaptic neuron only, has shown potential as an alternative training mechanism to backpropagation. Unfortunately, Hebbian learning remains experimental and rarely makes it way into standard deep learning frameworks. In this work, we investigate the potential of Hebbian learning in the context of standard deep learning workflows. To this end, a framework for thorough and systematic evaluation of local learning rules in existing deep learning pipelines is proposed. Using this framework, the potential of Hebbian learned feature extractors for image classification is illustrated. In particular, the framework is used to expand the Krotov-Hopfield learning rule to standard convolutional neural networks without sacrificing accuracy compared to end-to-end backpropagation. The source code is available at https://github.com/Joxis/pytorch-hebbian.

Citations (4)

Summary

We haven't generated a summary for this paper yet.