Papers
Topics
Authors
Recent
2000 character limit reached

Projected Stochastic Gradient Langevin Algorithms for Constrained Sampling and Non-Convex Learning

Published 22 Dec 2020 in cs.LG, math.OC, and math.PR | (2012.12137v1)

Abstract: Langevin algorithms are gradient descent methods with additive noise. They have been used for decades in Markov chain Monte Carlo (MCMC) sampling, optimization, and learning. Their convergence properties for unconstrained non-convex optimization and learning problems have been studied widely in the last few years. Other work has examined projected Langevin algorithms for sampling from log-concave distributions restricted to convex compact sets. For learning and optimization, log-concave distributions correspond to convex losses. In this paper, we analyze the case of non-convex losses with compact convex constraint sets and IID external data variables. We term the resulting method the projected stochastic gradient Langevin algorithm (PSGLA). We show the algorithm achieves a deviation of $O(T{-1/4}(\log T){1/2})$ from its target distribution in 1-Wasserstein distance. For optimization and learning, we show that the algorithm achieves $\epsilon$-suboptimal solutions, on average, provided that it is run for a time that is polynomial in $\epsilon{-1}$ and slightly super-exponential in the problem dimension.

Citations (24)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.