Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Laplacian Smoothing Stochastic Gradient Markov Chain Monte Carlo (1911.00782v1)

Published 2 Nov 2019 in cs.LG, cs.NA, math.NA, stat.CO, and stat.ML

Abstract: As an important Markov Chain Monte Carlo (MCMC) method, stochastic gradient Langevin dynamics (SGLD) algorithm has achieved great success in Bayesian learning and posterior sampling. However, SGLD typically suffers from slow convergence rate due to its large variance caused by the stochastic gradient. In order to alleviate these drawbacks, we leverage the recently developed Laplacian Smoothing (LS) technique and propose a Laplacian smoothing stochastic gradient Langevin dynamics (LS-SGLD) algorithm. We prove that for sampling from both log-concave and non-log-concave densities, LS-SGLD achieves strictly smaller discretization error in $2$-Wasserstein distance, although its mixing rate can be slightly slower. Experiments on both synthetic and real datasets verify our theoretical results, and demonstrate the superior performance of LS-SGLD on different machine learning tasks including posterior sampling, Bayesian logistic regression and training Bayesian convolutional neural networks. The code is available at \url{https://github.com/BaoWangMath/LS-MCMC}.

Citations (8)

Summary

We haven't generated a summary for this paper yet.