Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analyzing non-equilibrium quantum states through snapshots with artificial neural networks (2012.11586v2)

Published 21 Dec 2020 in cond-mat.quant-gas, cond-mat.dis-nn, cond-mat.str-el, and quant-ph

Abstract: Current quantum simulation experiments are starting to explore non-equilibrium many-body dynamics in previously inaccessible regimes in terms of system sizes and time scales. Therefore, the question emerges which observables are best suited to study the dynamics in such quantum many-body systems. Using machine learning techniques, we investigate the dynamics and in particular the thermalization behavior of an interacting quantum system which undergoes a dynamical phase transition from an ergodic to a many-body localized phase. A neural network is trained to distinguish non-equilibrium from thermal equilibrium data, and the network performance serves as a probe for the thermalization behavior of the system. We test our methods with experimental snapshots of ultracold atoms taken with a quantum gas microscope. Our results provide a path to analyze highly-entangled large-scale quantum states for system sizes where numerical calculations of conventional observables become challenging.

Summary

We haven't generated a summary for this paper yet.