Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural network enhanced hybrid quantum many-body dynamical distributions (2105.03129v1)

Published 7 May 2021 in cond-mat.dis-nn and cond-mat.str-el

Abstract: Computing dynamical distributions in quantum many-body systems represents one of the paradigmatic open problems in theoretical condensed matter physics. Despite the existence of different techniques both in real-time and frequency space, computational limitations often dramatically constrain the physical regimes in which quantum many-body dynamics can be efficiently solved. Here we show that the combination of machine learning methods and complementary many-body tensor network techniques substantially decreases the computational cost of quantum many-body dynamics. We demonstrate that combining kernel polynomial techniques and real-time evolution, together with deep neural networks, allows to compute dynamical quantities faithfully. Focusing on many-body dynamical distributions, we show that this hybrid neural-network many-body algorithm, trained with single-particle data only, can efficiently extrapolate dynamics for many-body systems without prior knowledge. Importantly, this algorithm is shown to be substantially resilient to numerical noise, a feature of major importance when using this algorithm together with noisy many-body methods. Ultimately, our results provide a starting point towards neural-network powered algorithms to support a variety of quantum many-body dynamical methods, that could potentially solve computationally expensive many-body systems in a more efficient manner.

Summary

We haven't generated a summary for this paper yet.