Papers
Topics
Authors
Recent
2000 character limit reached

Probabilistic Dependency Graphs

Published 19 Dec 2020 in cs.AI, cs.IT, and math.IT | (2012.10800v1)

Abstract: We introduce Probabilistic Dependency Graphs (PDGs), a new class of directed graphical models. PDGs can capture inconsistent beliefs in a natural way and are more modular than Bayesian Networks (BNs), in that they make it easier to incorporate new information and restructure the representation. We show by example how PDGs are an especially natural modeling tool. We provide three semantics for PDGs, each of which can be derived from a scoring function (on joint distributions over the variables in the network) that can be viewed as representing a distribution's incompatibility with the PDG. For the PDG corresponding to a BN, this function is uniquely minimized by the distribution the BN represents, showing that PDG semantics extend BN semantics. We show further that factor graphs and their exponential families can also be faithfully represented as PDGs, while there are significant barriers to modeling a PDG with a factor graph.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.