Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Loss as the Inconsistency of a Probabilistic Dependency Graph: Choose Your Model, Not Your Loss Function (2202.11862v1)

Published 24 Feb 2022 in cs.LG, cs.AI, cs.IT, and math.IT

Abstract: In a world blessed with a great diversity of loss functions, we argue that that choice between them is not a matter of taste or pragmatics, but of model. Probabilistic depencency graphs (PDGs) are probabilistic models that come equipped with a measure of "inconsistency". We prove that many standard loss functions arise as the inconsistency of a natural PDG describing the appropriate scenario, and use the same approach to justify a well-known connection between regularizers and priors. We also show that the PDG inconsistency captures a large class of statistical divergences, and detail benefits of thinking of them in this way, including an intuitive visual language for deriving inequalities between them. In variational inference, we find that the ELBO, a somewhat opaque objective for latent variable models, and variants of it arise for free out of uncontroversial modeling assumptions -- as do simple graphical proofs of their corresponding bounds. Finally, we observe that inconsistency becomes the log partition function (free energy) in the setting where PDGs are factor graphs.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com