Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

DSM Refinement with Deep Encoder-Decoder Networks (2012.07427v1)

Published 14 Dec 2020 in cs.CV and eess.IV

Abstract: 3D city models can be generated from aerial images. However, the calculated DSMs suffer from noise, artefacts, and data holes that have to be manually cleaned up in a time-consuming process. This work presents an approach that automatically refines such DSMs. The key idea is to teach a neural network the characteristics of urban area from reference data. In order to achieve this goal, a loss function consisting of an L1 norm and a feature loss is proposed. These features are constructed using a pre-trained image classification network. To learn to update the height maps, the network architecture is set up based on the concept of deep residual learning and an encoder-decoder structure. The results show that this combination is highly effective in preserving the relevant geometric structures while removing the undesired artefacts and noise.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.