Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 165 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 29 tok/s Pro
2000 character limit reached

A Discovery Tour in Random Riemannian Geometry (2012.06796v3)

Published 12 Dec 2020 in math.PR

Abstract: We study random perturbations of Riemannian manifolds $(\mathsf{M},\mathsf{g})$ by means of so-called Fractional Gaussian Fields, which are defined intrinsically by the given manifold. The fields $h\bullet: \omega\mapsto h\omega$ will act on the manifolds via conformal transformation $\mathsf{g}\mapsto \mathsf{g}\omega\colon!!= e{2h\omega}\,\mathsf{g}$. Our focus will be on the regular case with Hurst parameter $H>0$, the celebrated Liouville geometry in two dimensions being borderline. We want to understand how basic geometric and functional analytic quantities like diameter, volume, heat kernel, Brownian motion, spectral bound, or spectral gap will change under the influence of the noise. And if so, is it possible to quantify these dependencies in terms of key parameters of the noise. Another goal is to define and analyze in detail the Fractional Gaussian Fields on a general Riemannian manifold, a fascinating object of independent interest.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube