A Discovery Tour in Random Riemannian Geometry (2012.06796v3)
Abstract: We study random perturbations of Riemannian manifolds $(\mathsf{M},\mathsf{g})$ by means of so-called Fractional Gaussian Fields, which are defined intrinsically by the given manifold. The fields $h\bullet: \omega\mapsto h\omega$ will act on the manifolds via conformal transformation $\mathsf{g}\mapsto \mathsf{g}\omega\colon!!= e{2h\omega}\,\mathsf{g}$. Our focus will be on the regular case with Hurst parameter $H>0$, the celebrated Liouville geometry in two dimensions being borderline. We want to understand how basic geometric and functional analytic quantities like diameter, volume, heat kernel, Brownian motion, spectral bound, or spectral gap will change under the influence of the noise. And if so, is it possible to quantify these dependencies in terms of key parameters of the noise. Another goal is to define and analyze in detail the Fractional Gaussian Fields on a general Riemannian manifold, a fascinating object of independent interest.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.