Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

xRAI: Explainable Representations through AI (2012.06006v1)

Published 10 Dec 2020 in cs.AI and cs.LG

Abstract: We present xRAI an approach for extracting symbolic representations of the mathematical function a neural network was supposed to learn from the trained network. The approach is based on the idea of training a so-called interpretation network that receives the weights and biases of the trained network as input and outputs the numerical representation of the function the network was supposed to learn that can be directly translated into a symbolic representation. We show that interpretation nets for different classes of functions can be trained on synthetic data offline using Boolean functions and low-order polynomials as examples. We show that the training is rather efficient and the quality of the results are promising. Our work aims to provide a contribution to the problem of better understanding neural decision making by making the target function explicit

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube