Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Deep learning for clustering of continuous gravitational wave candidates II: identification of low-SNR candidates (2012.04381v2)

Published 8 Dec 2020 in gr-qc, astro-ph.HE, and cs.LG

Abstract: Broad searches for continuous gravitational wave signals rely on hierarchies of follow-up stages for candidates above a given significance threshold. An important step to simplify these follow-ups and reduce the computational cost is to bundle together in a single follow-up nearby candidates. This step is called clustering and we investigate carrying it out with a deep learning network. In our first paper [1], we implemented a deep learning clustering network capable of correctly identifying clusters due to large signals. In this paper, a network is implemented that can detect clusters due to much fainter signals. These two networks are complementary and we show that a cascade of the two networks achieves an excellent detection efficiency across a wide range of signal strengths, with a false alarm rate comparable/lower than that of methods currently in use.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.