A novel multi-layer modular approach for real-time fuzzy-identification of gravitational-wave signals (2206.06004v4)
Abstract: Advanced LIGO and Advanced Virgo ground-based interferometers are instruments capable to detect gravitational wave signals exploiting advanced laser interferometry techniques. The underlying data analysis task consists in identifying specific patterns in noisy timeseries, but it is made extremely complex by the incredibly small amplitude of the target signals. In this scenario, the development of effective gravitational wave detection algorithms is crucial. We propose a novel layered framework for real-time detection of gravitational waves inspired by speech processing techniques and, in the present implementation, based on a state-of-the-art machine learning approach involving a hybridization of genetic programming and neural networks. The key aspects of the newly proposed framework are: the well structured, layered approach, and the low computational complexity. The paper describes the basic concepts of the framework and the derivation of the first three layers. Even if the layers are based on models derived using a machine learning approach, the proposed layered structure has a universal nature. Compared to more complex approaches, such as convolutional neural networks, which comprise a parameter set of several tens of MB and were tested exclusively for fixed length data samples, our framework has lower accuracy (e.g., it identifies 45% of low signal-to-noise-ration gravitational wave signals, against 65% of the state-of-the-art, at a false alarm probability of $10{-2}$), but has a much lower computational complexity and a higher degree of modularity. Furthermore, the exploitation of short-term features makes the results of the new framework virtually independent against time-position of gravitational wave signals, simplifying its future exploitation in real-time multi-layer pipelines for gravitational-wave detection with new generation interferometers.
- Aasi J et al. 2015 Class. Quant. Grav. 32 074001
- Abbott B et al. 2016 Phys. Rev. Lett. 116 131103
- Abbott B et al. 2016 Phys. Rev. Lett. 116 061102
- Abbott B et al. 2016 Phys. Rev. Lett. 116 221101
- Abbott B et al. 2016 Phys. Rev. X 6 041015
- Abbott B et al. 2016 Phys. Rev. Lett. 116 241102
- Li T et al. 2012 Phys. Rev. D 85 082003
- Mishra C et al. 2010 Phys. Rev. D 82 064010
- Acernese F et al. 2015 Class. Quant. Grav. 32 024001
- Abbott B et al. 2017 (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 119 141101
- Abbott B et al. 2019 (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. X 9 031040
- Abbott R et al. 2020 (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 125 101102
- Abbott B et al. 2017 (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 119 161101
- Abbott B et al. 2017 Astrophys. J. 848 L12
- Abbott B et al. 2017 Astrophys. J. Lett. 848 L13
- Abbott B et al. 2016 Living Rev. Relativity 19 1
- Abbott T et al. 2016 (Dark Energy Survey Collaboration) Mon. Not. R. Astron. Soc. 460 1270
- Abdo A et al. 2013 Astrophys. J. Suppl. Ser. 208 17
- Aartsen M et al. 2020 Astrophys. J. Lett. 898 L10
- Abe K et al. 2018 Astrophys. J. Lett. 857 L4
- Adrián-Martinez S et al. 2007 (The ANTARES collaboration, the LIGO scientific collaboration and the Virgo collaboration) J. Cosm. Astropart. Phys. 6 008
- Indik N et al. 2018 Phys. Rev. D 97 124008
- Owen B et al. 1999 Phys. Rev. D 60 022002
- Usman S et al. 2016 Class. Quant. Grav. 33 215004
- Adams T et al. 2016 Class. Quant. Grav. 33 175012
- Klimenko S et al. 2008 Class. Quant. Grav. 25 114029
- Klimenko S et al. 2016 Phys. Rev. D 93 042004
- Sylvestre J et al. 2002 Phys. Rev. D 66 102004
- Chatterji S et al. 2004 Class. Quant. Grav. 21 S1809
- George D and Huerta E 2018 Phys. Rev. D 97 044039
- Gabbard H et al. 2018 Phys. Rev. Lett. 120 141103
- Razzano M et al. 2018 Class. Quantum Grav. 35 095016
- George D and Huerta E 2018 Phys. Lett. B 778 64
- Russo M 2016 Swarm. Evo. Comp. 27 145
- Russo M 2020 Soft Comp. 24 16885
- Russo M et al. 2014 Solar Energy 105 264
- Buccheri E, Dell’Aquila D and Russo M 2021 Diab. Res. Clin. Pract. 174 108722
- Buccheri E, Dell’Aquila D and Russo M 2022 Obes. Medicine 31 100398
- Dell’Aquila D and Russo M 2021 Comp. Phys. Comm. 259 107667
- Husa S et al. 2016 Phys. Rev. D 93 044006
- Khan S et al. 2016 Phys. Rev. D 93 044007
- Beritelli F, Casale S and Cavallaro A 1997 Electron. Lett. 33 1846
- Beritelli F, Casale S and Cavallaro A 1998 IEEE J. Sel. Areas Comm. 16 1818
- Beritelli F, Casale S and Russo M 1999 Int. J. of Patt. Rec. Artif. Int. 13 109–132
- LIGO Scientific Collaboration 2018 LIGO Algorithm Library - LALSuite free software (GPL)
- Giannakopoulos T 2015 PloS one 10
- Rabiner R and Schafer R 2010 Theory and Applications of Digital Speech Processing (United States: Prentice Hall Press)
- Badak S et al. 2013 Phys. Rev. D 87 024033
- Blanchet L 1998 Class. Quant. Grav. 15 1971
- Blanchet et al. 2002 Phys. Rev. D 65 061501(R)
- Blanchet et al. 2004 Phys. Rev. Lett. 93 091101
- Pretorius F 2005 Class. Quantum Grav. 22 425
- Baker J G et al. 2006 Phys. Rev. Lett. 96 111102
- Campanelli M et al. 2006 Phys. Rev. D 96 111101
- Kidder L E 2008 Phys. Rev. D 77 044016