Papers
Topics
Authors
Recent
2000 character limit reached

An Empirical Study of Explainable AI Techniques on Deep Learning Models For Time Series Tasks

Published 8 Dec 2020 in cs.LG and cs.AI | (2012.04344v1)

Abstract: Decision explanations of machine learning black-box models are often generated by applying Explainable AI (XAI) techniques. However, many proposed XAI methods produce unverified outputs. Evaluation and verification are usually achieved with a visual interpretation by humans on individual images or text. In this preregistration, we propose an empirical study and benchmark framework to apply attribution methods for neural networks developed for images and text data on time series. We present a methodology to automatically evaluate and rank attribution techniques on time series using perturbation methods to identify reliable approaches.

Citations (12)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.