Papers
Topics
Authors
Recent
2000 character limit reached

Towards a Rigorous Evaluation of XAI Methods on Time Series

Published 16 Sep 2019 in cs.LG and cs.AI | (1909.07082v2)

Abstract: Explainable Artificial Intelligence (XAI) methods are typically deployed to explain and debug black-box machine learning models. However, most proposed XAI methods are black-boxes themselves and designed for images. Thus, they rely on visual interpretability to evaluate and prove explanations. In this work, we apply XAI methods previously used in the image and text-domain on time series. We present a methodology to test and evaluate various XAI methods on time series by introducing new verification techniques to incorporate the temporal dimension. We further conduct preliminary experiments to assess the quality of selected XAI method explanations with various verification methods on a range of datasets and inspecting quality metrics on it. We demonstrate that in our initial experiments, SHAP works robust for all models, but others like DeepLIFT, LRP, and Saliency Maps work better with specific architectures.

Citations (154)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.