Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Learning Compositional Negation in Populations of Roth-Erev and Neural Agents (2012.04107v1)

Published 7 Dec 2020 in cs.MA

Abstract: Agent-based models and signalling games are useful tools with which to study the emergence of linguistic communication in a tractable setting. These techniques have been used to study the compositional property of natural languages, but have been limited in how closely they model real communicators. In this work, we present a novel variant of the classic signalling game that explores the learnability of simple compositional rules concerning negation. The approach builds on the work of Steinert-Threlkeld (2016) by allowing agents to determine the identity of the "function word" representing negation while simultaneously learning to assign meanings to atomic symbols. We extend the analysis with the introduction of a population of concurrently communicating agents, and explore how the complications brought about by a larger population size affect the type and stability of the signalling systems learned. We also relax assumptions of the parametric form of the learning agents and examine how neural network-based agents optimized through reinforcement learning behave under various task settings. We find that basic compositional properties are robustly learnable across a wide range of model relaxations and agent instantiations.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.