Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian Graph Neural Networks for Molecular Property Prediction (2012.02089v1)

Published 25 Nov 2020 in q-bio.BM and cs.LG

Abstract: Graph neural networks for molecular property prediction are frequently underspecified by data and fail to generalise to new scaffolds at test time. A potential solution is Bayesian learning, which can capture our uncertainty in the model parameters. This study benchmarks a set of Bayesian methods applied to a directed MPNN, using the QM9 regression dataset. We find that capturing uncertainty in both readout and message passing parameters yields enhanced predictive accuracy, calibration, and performance on a downstream molecular search task.

Citations (12)

Summary

We haven't generated a summary for this paper yet.