Papers
Topics
Authors
Recent
2000 character limit reached

Wavelet-based clustering for time-series trend detection (2011.12111v1)

Published 17 Nov 2020 in eess.SP, cs.CV, and cs.LG

Abstract: In this paper, we introduce a method performing clustering of time-series on the basis of their trend (increasing, stagnating/decreasing, and seasonal behavior). The clustering is performed using $k$-means method on a selection of coefficients obtained by discrete wavelet transform, reducing drastically the dimensionality. The method is applied on an use case for the clustering of a 864 daily sales revenue time-series for 61 retail shops. The results are presented for different mother wavelets. The importance of each wavelet coefficient and its level is discussed thanks to a principal component analysis along with a reconstruction of the signal from the selected wavelet coefficients.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.