Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Game Theoretic Analysis for Cooperative Smart Farming (2011.11098v1)

Published 22 Nov 2020 in cs.GT

Abstract: The application of Internet of Things (IoT) and Machine Learning (ML) to the agricultural industry has enabled the development and creation of smart farms and precision agriculture. The growth in the number of smart farms and potential cooperation between these farms has given rise to the Cooperative Smart Farming (CSF) where different connected farms collaborate with each other and share data for their mutual benefit. This data sharing through CSF has various advantages where individual data from separate farms can be aggregated by ML models and be used to produce actionable outputs which then can be utilized by all the farms in CSFs. This enables farms to gain better insights for enhancing desired outputs, such as crop yield, managing water resources and irrigation schedules, as well as better seed applications. However, complications may arise in CSF when some of the farms do not transfer high-quality data and rather rely on other farms to feed ML models. Another possibility is the presence of rogue farms in CSFs that want to snoop on other farms without actually contributing any data. In this paper, we analyze the behavior of farms participating in CSFs using game theory approach, where each farm is motivated to maximize its profit. We first present the problem of defective farms in CSFs due to lack of better data, and then propose a ML framework that segregates farms and automatically assign them to an appropriate CSF cluster based on the quality of data they provide. Our proposed model rewards the farms supplying better data and penalize the ones that do not provide required data or are malicious in nature, thus, ensuring the model integrity and better performance all over while solving the defective farms problem.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.