Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Class Unique Features in Fine-Grained Visual Classification (2011.10951v2)

Published 22 Nov 2020 in cs.LG and cs.GT

Abstract: A major challenge in Fine-Grained Visual Classification (FGVC) is distinguishing various categories with high inter-class similarity by learning the feature that differentiate the details. Conventional cross entropy trained Convolutional Neural Network (CNN) fails this challenge as it may suffer from producing inter-class invariant features in FGVC. In this work, we innovatively propose to regularize the training of CNN by enforcing the uniqueness of the features to each category from an information theoretic perspective. To achieve this goal, we formulate a minimax loss based on a game theoretic framework, where a Nash equilibria is proved to be consistent with this regularization objective. Besides, to prevent from a feasible solution of minimax loss that may produce redundant features, we present a Feature Redundancy Loss (FRL) based on normalized inner product between each selected feature map pair to complement the proposed minimax loss. Superior experimental results on several influential benchmarks along with visualization show that our method gives full play to the performance of the baseline model without additional computation and achieves comparable results with state-of-the-art models.

Summary

We haven't generated a summary for this paper yet.