Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ELoPE: Fine-Grained Visual Classification with Efficient Localization, Pooling and Embedding (1911.07344v1)

Published 17 Nov 2019 in cs.CV

Abstract: The task of fine-grained visual classification (FGVC) deals with classification problems that display a small inter-class variance such as distinguishing between different bird species or car models. State-of-the-art approaches typically tackle this problem by integrating an elaborate attention mechanism or (part-) localization method into a standard convolutional neural network (CNN). Also in this work the aim is to enhance the performance of a backbone CNN such as ResNet by including three efficient and lightweight components specifically designed for FGVC. This is achieved by using global k-max pooling, a discriminative embedding layer trained by optimizing class means and an efficient bounding box estimator that only needs class labels for training. The resulting model achieves new best state-of-the-art recognition accuracies on the Stanford cars and FGVC-Aircraft datasets.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Harald Hanselmann (2 papers)
  2. Hermann Ney (104 papers)
Citations (27)

Summary

We haven't generated a summary for this paper yet.