Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Toward Edge-Centric Network Embeddings (2011.05650v1)

Published 11 Nov 2020 in cs.SI and cs.LG

Abstract: Existing network embedding approaches tackle the problem of learning low-dimensional node representations. However, networks can also be seen in the light of edges interlinking pairs of nodes. The broad goal of this paper is to introduce edge-centric network embeddings. We present an approach called ECNE, which instead of computing node embeddings directly, computes edge embeddings by relying on the notion of line graph coupled with an edge weighting mechanism to preserve the dynamic of the original graph in the line graph. We also present a link prediction framework called ECNE-LP, which given a target link (u,v) first collects paths between nodes u and v, then directly embeds the edges in these paths, and finally aggregates them toward predicting the existence of a link. We show that both ECNE and ECNE-LP bring benefit wrt the state-of-the-art.

Summary

We haven't generated a summary for this paper yet.