Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning 3D Dynamic Scene Representations for Robot Manipulation (2011.01968v2)

Published 3 Nov 2020 in cs.RO and cs.CV

Abstract: 3D scene representation for robot manipulation should capture three key object properties: permanency -- objects that become occluded over time continue to exist; amodal completeness -- objects have 3D occupancy, even if only partial observations are available; spatiotemporal continuity -- the movement of each object is continuous over space and time. In this paper, we introduce 3D Dynamic Scene Representation (DSR), a 3D volumetric scene representation that simultaneously discovers, tracks, reconstructs objects, and predicts their dynamics while capturing all three properties. We further propose DSR-Net, which learns to aggregate visual observations over multiple interactions to gradually build and refine DSR. Our model achieves state-of-the-art performance in modeling 3D scene dynamics with DSR on both simulated and real data. Combined with model predictive control, DSR-Net enables accurate planning in downstream robotic manipulation tasks such as planar pushing. Video is available at https://youtu.be/GQjYG3nQJ80.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Zhenjia Xu (22 papers)
  2. Zhanpeng He (15 papers)
  3. Jiajun Wu (249 papers)
  4. Shuran Song (110 papers)
Citations (48)

Summary

We haven't generated a summary for this paper yet.