Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

LSTM for Model-Based Anomaly Detection in Cyber-Physical Systems (2010.15680v1)

Published 29 Oct 2020 in cs.LG

Abstract: Anomaly detection is the task of detecting data which differs from the normal behaviour of a system in a given context. In order to approach this problem, data-driven models can be learned to predict current or future observations. Oftentimes, anomalous behaviour depends on the internal dynamics of the system and looks normal in a static context. To address this problem, the model should also operate depending on state. Long Short-Term Memory (LSTM) neural networks have been shown to be particularly useful to learn time sequences with varying length of temporal dependencies and are therefore an interesting general purpose approach to learn the behaviour of arbitrarily complex Cyber-Physical Systems. In order to perform anomaly detection, we slightly modify the standard norm 2 error to incorporate an estimate of model uncertainty. We analyse the approach on artificial and real data.

Citations (14)

Summary

We haven't generated a summary for this paper yet.