Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Another estimating the absolute value of Mertens function (2010.14232v1)

Published 23 Oct 2020 in math.GM

Abstract: Through an inversion approach, we suggest a possible estimation for the absolute value of Mertens function $\vert M(x) \vert$ that $ \left\vert M(x) \right\vert \sim \left[\frac{1}{\pi \sqrt{\varepsilon}(x+\varepsilon)}\right]\sqrt{x}$ (where $x$ is an appropriately large real number, and $\varepsilon$ ($0<\varepsilon<1$) is a small real number which makes $2x+\varepsilon$ to be an integer). For any large $x$, we can always find an $\varepsilon$, so that $\vert M(x) \vert < \left[\frac{1}{\pi \sqrt{\varepsilon}(x+\varepsilon)}\right]\sqrt{x}$.

Citations (1)

Summary

We haven't generated a summary for this paper yet.