On the Stieltjes Approximation Error to Logarithmic Integral (2406.12152v1)
Abstract: This paper studies the error introduced ($\displaystyle \varepsilon(x)$) by the Stieltjes asymptotic approximation series $\displaystyle li_{}(x) = \frac{x}{\log(x)}\sum_{k=0}{n-1}\frac{k!}{\log{k}(x)} + (\log(x)-n)\frac{xn!}{\log{n+1}(x)}$ to the logarithmic integral function $li(x)$ with $\displaystyle n = \lfloor \log(x) \rfloor$ for all $x\ge e$. For this purpose, this paper uses some relations between term $\displaystyle \frac{n!}{\log{n}(x)}$ and Stirling's approximation formula. In particular, this paper establishes two non-asymptotic lower and upper bounds for $\varepsilon(en)$ with $n \ge 1$ and $1 \le m \le n$: (i) $\displaystyle \varepsilon(em) + \frac{\sqrt{2\pi}}{8}\sum_{k=m+1}{n} \frac{1}{k{\frac{3}{2}}} \le \varepsilon(en) \le \varepsilon(e{m}) + \frac{\sqrt{2\pi}}{4}\sum_{k=m+1}{n} \frac{k+2}{k{\frac{5}{2}}}$ (ii) $\displaystyle L_m - \frac{\sqrt{2\pi}}{4\sqrt{n+1}} \le \varepsilon_{n} \le R_m - \frac{\sqrt{2\pi}}{2\sqrt{n}} - \frac{\sqrt{2\pi}}{3\sqrt{n3}}$. Here, $\displaystyle L_m = \varepsilon_{m} + \frac{\sqrt{2\pi}}{4\sqrt{m+1}}$ and $\displaystyle R_m = \varepsilon_{m} + \frac{\sqrt{2\pi}}{2\sqrt{m}} + \frac{\sqrt{2\pi}}{3\sqrt{m3}}$ Moreover, this paper shows that if $\displaystyle |\varepsilon(x)| \le \frac{\sqrt{2\pi}}{\sqrt{\log(x)}}$ then $li(en) \le li_{}(en)$ for all $n \ge 1$. Finally, this paper establishes non-asymptotic lower and upper bounds for $\varepsilon(x)$ with $x \ge e$: $\displaystyle L_m - \frac{\sqrt{2\pi}}{4\sqrt{n+1}} -\frac{\sqrt{2\pi}}{36\sqrt{n3}} < \varepsilon(x) \le R_m - \frac{\sqrt{2\pi}}{2\sqrt{n}} - \frac{\sqrt{2\pi}}{3\sqrt{n3}}$