Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Infrared spectra of neutral polycyclic aromatic hydrocarbons by machine learning (2010.13686v1)

Published 26 Oct 2020 in physics.chem-ph, cs.LG, and physics.comp-ph

Abstract: The Interest in polycyclic aromatic hydrocarbons (PAHs) spans numerous fields and infrared spectroscopy is usually the method of choice to disentangle their molecular structure. In order to compute vibrational frequencies, numerous theoretical studies employ either quantum calculation methods, or empirical potentials, but it remains difficult to combine the accuracy of the first approach with the computational cost of the second. In this work, we employed Machine Learning techniques to develop a potential energy surface and a dipole mapping based on an artificial neural network (ANN) architecture. Altogether, while trained on only 11 small PAH molecules, the obtained ANNs are able to retrieve the infrared spectra of those small molecules, but more importantly of 8 large PAHs different from the training set, thus demonstrating the transferability of our approach.

Citations (8)

Summary

We haven't generated a summary for this paper yet.