Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Document-level Event Extraction with Efficient End-to-end Learning of Cross-event Dependencies (2010.12787v3)

Published 24 Oct 2020 in cs.CL

Abstract: Fully understanding narratives often requires identifying events in the context of whole documents and modeling the event relations. However, document-level event extraction is a challenging task as it requires the extraction of event and entity coreference, and capturing arguments that span across different sentences. Existing works on event extraction usually confine on extracting events from single sentences, which fail to capture the relationships between the event mentions at the scale of a document, as well as the event arguments that appear in a different sentence than the event trigger. In this paper, we propose an end-to-end model leveraging Deep Value Networks (DVN), a structured prediction algorithm, to efficiently capture cross-event dependencies for document-level event extraction. Experimental results show that our approach achieves comparable performance to CRF-based models on ACE05, while enjoys significantly higher computational efficiency.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Kung-Hsiang Huang (22 papers)
  2. Nanyun Peng (205 papers)
Citations (35)