Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deriving Time-varying Cellular Motility Parameters via Wavelet Analysis (2010.12752v1)

Published 24 Oct 2020 in physics.bio-ph

Abstract: Cell migration is an indispensable physiological and pathological process for normal tissue development and cancer metastasis, which is greatly regulated by intracellular signal pathways and extracellular microenvironment (ECM). However, there is a lack of adequate tools to analyze the time-varying cell migration characteristics because of the effects of some factors, i.e., the ECM including the time-dependent local stiffness due to microstructural remodeling by migrating cells. Here, we develop an approach to derive the time-dependent motility parameters from cellular trajectories, based on the time-varying persistent random walk model. In particular, we employ the wavelet denoising and wavelet transform to investigate cell migration velocities and obtain the wavelet power spectrum. The time-dependent motility parameters are subsequently derived via Lorentzian power spectrum. Our analysis shows that the combination of wavelet denoising, wavelet transform and Lorentzian power spectrum provides a powerful tool to derive accurately the time-dependent motility parameters, which reflects the time-varying microenvironment characteristics to some extent.

Summary

We haven't generated a summary for this paper yet.