Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Face Hallucination via Split-Attention in Split-Attention Network (2010.11575v3)

Published 22 Oct 2020 in cs.CV

Abstract: Recently, convolutional neural networks (CNNs) have been widely employed to promote the face hallucination due to the ability to predict high-frequency details from a large number of samples. However, most of them fail to take into account the overall facial profile and fine texture details simultaneously, resulting in reduced naturalness and fidelity of the reconstructed face, and further impairing the performance of downstream tasks (e.g., face detection, facial recognition). To tackle this issue, we propose a novel external-internal split attention group (ESAG), which encompasses two paths responsible for facial structure information and facial texture details, respectively. By fusing the features from these two paths, the consistency of facial structure and the fidelity of facial details are strengthened at the same time. Then, we propose a split-attention in split-attention network (SISN) to reconstruct photorealistic high-resolution facial images by cascading several ESAGs. Experimental results on face hallucination and face recognition unveil that the proposed method not only significantly improves the clarity of hallucinated faces, but also encourages the subsequent face recognition performance substantially. Codes have been released at https://github.com/mdswyz/SISN-Face-Hallucination.

Citations (68)

Summary

We haven't generated a summary for this paper yet.