Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Probing and Fine-tuning Reading Comprehension Models for Few-shot Event Extraction (2010.11325v1)

Published 21 Oct 2020 in cs.CL

Abstract: We study the problem of event extraction from text data, which requires both detecting target event types and their arguments. Typically, both the event detection and argument detection subtasks are formulated as supervised sequence labeling problems. We argue that the event extraction models so trained are inherently label-hungry, and can generalize poorly across domains and text genres.We propose a reading comprehension framework for event extraction.Specifically, we formulate event detection as a textual entailment prediction problem, and argument detection as a question answer-ing problem. By constructing proper query templates, our approach can effectively distill rich knowledge about tasks and label semantics from pretrained reading comprehension models. Moreover, our model can be fine-tuned with a small amount of data to boost its performance. Our experiment results show that our method performs strongly for zero-shot and few-shot event extraction, and it achieves state-of-the-art performance on the ACE 2005 benchmark when trained with full supervision.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Rui Feng (67 papers)
  2. Jie Yuan (65 papers)
  3. Chao Zhang (907 papers)
Citations (20)