Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quality of service based radar resource management using deep reinforcement learning (2010.10210v1)

Published 20 Oct 2020 in eess.SP and cs.LG

Abstract: An intelligent radar resource management is an essential milestone in the development of a cognitive radar system. The quality of service based resource allocation model (Q-RAM) is a framework allowing for intelligent decision making but classical solutions seem insufficient for real-time application in a modern radar system. In this paper, we present a solution for the Q-RAM radar resource management problem using deep reinforcement learning considerably improving on runtime performance.

Citations (7)

Summary

We haven't generated a summary for this paper yet.