Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Algorithmic Stability and Generalization of an Unsupervised Feature Selection Algorithm (2010.09416v2)

Published 19 Oct 2020 in cs.LG and stat.ML

Abstract: Feature selection, as a vital dimension reduction technique, reduces data dimension by identifying an essential subset of input features, which can facilitate interpretable insights into learning and inference processes. Algorithmic stability is a key characteristic of an algorithm regarding its sensitivity to perturbations of input samples. In this paper, we propose an innovative unsupervised feature selection algorithm attaining this stability with provable guarantees. The architecture of our algorithm consists of a feature scorer and a feature selector. The scorer trains a neural network (NN) to globally score all the features, and the selector adopts a dependent sub-NN to locally evaluate the representation abilities for selecting features. Further, we present algorithmic stability analysis and show that our algorithm has a performance guarantee via a generalization error bound. Extensive experimental results on real-world datasets demonstrate superior generalization performance of our proposed algorithm to strong baseline methods. Also, the properties revealed by our theoretical analysis and the stability of our algorithm-selected features are empirically confirmed.

Citations (6)

Summary

We haven't generated a summary for this paper yet.