Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s
GPT-5 High 12 tok/s Pro
GPT-4o 96 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 217 tok/s Pro
2000 character limit reached

Multi-channel target speech extraction with channel decorrelation and target speaker adaptation (2010.09191v2)

Published 19 Oct 2020 in eess.AS

Abstract: The end-to-end approaches for single-channel target speech extraction have attracted widespread attention. However, the studies for end-to-end multi-channel target speech extraction are still relatively limited. In this work, we propose two methods for exploiting the multi-channel spatial information to extract the target speech. The first one is using a target speech adaptation layer in a parallel encoder architecture. The second one is designing a channel decorrelation mechanism to extract the inter-channel differential information to enhance the multi-channel encoder representation. We compare the proposed methods with two strong state-of-the-art baselines. Experimental results on the multi-channel reverberant WSJ0 2-mix dataset demonstrate that our proposed methods achieve up to 11.2% and 11.5% relative improvements in SDR and SiSDR respectively, which are the best reported results on this task to the best of our knowledge.

Citations (13)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.