Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Temporal-Spatial Neural Filter: Direction Informed End-to-End Multi-channel Target Speech Separation (2001.00391v1)

Published 2 Jan 2020 in cs.SD, cs.LG, and eess.AS

Abstract: Target speech separation refers to extracting the target speaker's speech from mixed signals. Despite the recent advances in deep learning based close-talk speech separation, the applications to real-world are still an open issue. Two main challenges are the complex acoustic environment and the real-time processing requirement. To address these challenges, we propose a temporal-spatial neural filter, which directly estimates the target speech waveform from multi-speaker mixture in reverberant environments, assisted with directional information of the speaker(s). Firstly, against variations brought by complex environment, the key idea is to increase the acoustic representation completeness through the jointly modeling of temporal, spectral and spatial discriminability between the target and interference source. Specifically, temporal, spectral, spatial along with the designed directional features are integrated to create a joint acoustic representation. Secondly, to reduce the latency, we design a fully-convolutional autoencoder framework, which is purely end-to-end and single-pass. All the feature computation is implemented by the network layers and operations to speed up the separation procedure. Evaluation is conducted on simulated reverberant dataset WSJ0-2mix and WSJ0-3mix under speaker-independent scenario. Experimental results demonstrate that the proposed method outperforms state-of-the-art deep learning based multi-channel approaches with fewer parameters and faster processing speed. Furthermore, the proposed temporal-spatial neural filter can handle mixtures with varying and unknown number of speakers and exhibits persistent performance even when existing a direction estimation error. Codes and models will be released soon.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Rongzhi Gu (28 papers)
  2. Yuexian Zou (119 papers)
Citations (17)

Summary

We haven't generated a summary for this paper yet.